Microsecond rotational dynamics of spin-labeled myosin regulatory light chain induced by relaxation and contraction of scallop muscle.

نویسندگان

  • O Roopnarine
  • A G Szent-Györgyi
  • D D Thomas
چکیده

We have used saturation transfer electron paramagnetic resonance (ST-EPR) to study the rotational dynamics of spin-labeled regulatory light chain (RLC) in scallop (Placopecten magellanicus) muscle fibers. The single cysteine (Cys 51) in isolated clam (Mercenaria) RLC was labeled with an indanedione spin label (InVSL). RLC was completely and specifically extracted from scallop striated muscle fibers, eliminating the Ca sensitivity of ATPase activity and isometric force, which were both completely restored by stoichiometric incorporation of labeled RLC. The EPR spectrum of the isolated RLC revealed nanosecond rotational motions within the RLC, which were completely eliminated when the labeled RLC was bound to myosin heads in myofibrils or fibers in rigor. This is the most strongly immobilized RLC-bound probe reported to date and thus offers the most reliable detection of the overall rotational motion of the LC domain. Conventional EPR spectra of oriented fibers indicated essentially complete probe disorder, independent of ATP and Ca, eliminating orientational dependence and thus making this probe ideal for unambiguous measurement of microsecond rotational motions of the LC domain by ST-EPR. ST-EPR spectra of fibers in rigor indicated an effective rotational correlation time (taureff) of 140 +/- 5 microseconds, similar to that observed for the same spin label bound to the catalytic domain. Relaxation by ATP induced microsecond rotational motion (taureff = 70 +/- 4 microseconds), and this motion was slightly slower upon Ca activation of isometric contraction (taureff = 100 +/- 5 microseconds). These motions in relaxation and contraction are similar to, but slower than, the motions previously reported for the same spin label bound to the catalytic domain. These results support a model for force generation involving rotational motion of the LC domain relative to the catalytic domain and dynamic disorder-to-order transitions in both domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotational dynamics of the regulatory light chain in scallop muscle detected by time-resolved phosphorescence anisotropy.

We have used time-resolved phosphorescence anisotropy (TPA) to study the rotational dynamics of chicken gizzard regulatory light chain (RLC) bound to scallop adductor muscle myofibrils in key physiological states. Native RLC from scallop myofibrils was extracted and replaced completely with gizzard RLC labeled specifically at Cys 108 with erythrosin iodoacetamide (ErIA). The calcium sensitivity...

متن کامل

The mechanism of force generation in myosin: a disorder-to-order transition, coupled to internal structural changes.

We propose a molecular mechanism of force generation in muscle, based primarily on site-specific spectroscopic probe studies of myosin heads in contracting muscle fibers and myofibrils. Electron paramagnetic resonance (EPR) and time-resolved phosphorescence anisotropy (TPA) of probes attached to SH1 (Cys 707, in the catalytic domain of the head) have consistently shown that most myosin heads in...

متن کامل

Microsecond rotational motion of spin-labeled myosin heads during isometric muscle contraction. Saturation transfer electron paramagnetic resonance.

We have used saturation transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin heads in bundles of skinned muscle fibers, under conditions of rigor, relaxation, and isometric contraction. Experiments were performed on fiber bundles perfused continuously with an ATP-regenerating system. Conditions were identical to those we have used...

متن کامل

Molecular dynamics simulation of site-directed spin labeling: experimental validation in muscle fibers.

We have developed a computational molecular dynamics technique to simulate the motions of spin labels bound to the regulatory domain of scallop myosin. These calculations were then directly compared with site-directed spin labeling experimental results obtained by preparing seven single-cysteine mutants of the smooth muscle (chicken gizzard) myosin regulatory light chain and performing electron...

متن کامل

Three distinct actin-attached structural states of myosin in muscle fibers.

We have used thiol cross-linking and electron paramagnetic resonance (EPR) to resolve structural transitions of myosin's light chain domain (LCD) and catalytic domain (CD) that are associated with force generation. Spin labels were incorporated into the LCD of muscle fibers by exchanging spin-labeled regulatory light chain for endogenous regulatory light chain, with full retention of function. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 41  شماره 

صفحات  -

تاریخ انتشار 1998